39.Combination Sum
39. Combination Sum
- Given an array of distinct integers
candidates
and a target integertarget
, return a list of all unique combinations ofcandidates
where the chosen numbers sum totarget
. You may return the combinations in any order. - The same number may be chosen from
candidates
an unlimited number of times. Two combinations are unique if the frequency of at least one of the chosen numbers is different. - The test cases are generated such that the number of unique combinations that sum up to
target
is less than150
combinations for the given input.
Example 1
Input: candidates = [2,3,6,7], target = 7
Output: [[2,2,3],[7]]
Explanation:
2 and 3 are candidates, and 2 + 2 + 3 = 7. Note that 2 can be used multiple times.
7 is a candidate, and 7 = 7.
These are the only two combinations.
Example 2
Input: candidates = [2,3,5], target = 8
Output: [[2,2,2,2],[2,3,3],[3,5]]
Example 3
Input: candidates = [2], target = 1
Output: []
Method 1
【O(n^t) time | O(t) space】
package Leetcode.Backtracking;
import java.util.ArrayList;
import java.util.List;
/**
* This class implements the combination sum problem using backtracking algorithm.
*
* For given distinct integers and a target sum, it finds all unique combinations
* where the chosen numbers sum to the target. The same number can be chosen
* from candidates an unlimited number of times.
*
* @author zhengstars
* @date 2024/07/08
*/
public class CombinationSum {
/**
* Finds all unique combinations that sum up to the target.
*
* @param candidates an array of distinct integers
* @param target the target sum
* @return a list of all unique combinations that sum up to the target
*/
public static List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> result = new ArrayList<>();
backtrack(candidates, target, 0, new ArrayList<>(), result);
return result;
}
/**
* The backtracking function to search for combinations.
*
* @param candidates an array of distinct integers
* @param target the remaining target sum
* @param start the starting index of the search
* @param current the current combination being constructed
* @param result the list to store valid combinations
*/
private static void backtrack(int[] candidates, int target, int start, List<Integer> current, List<List<Integer>> result) {
if (target == 0) {
result.add(new ArrayList<>(current));
return;
}
if (target < 0) {
return;
}
for (int i = start; i < candidates.length; i++) {
current.add(candidates[i]);
// Recursive call to search for combinations
backtrack(candidates, target - candidates[i], i, current, result);
// Backtrack by removing the last element
current.remove(current.size() - 1);
}
}
/**
* Main method to test the combinationSum function.
*/
public static void main(String[] args) {
int[] candidates1 = {2, 3, 6, 7};
int target1 = 7;
System.out.println(combinationSum(candidates1, target1)); // [ [2, 2, 3], [7]]
int[] candidates2 = {2, 3, 5};
int target2 = 8;
System.out.println(combinationSum(candidates2, target2)); // [ [2, 2, 2, 2], [2, 3, 3], [3, 5]]
int[] candidates3 = {2};
int target3 = 1;
System.out.println(combinationSum(candidates3, target3)); // []
}
}
Enjoy Reading This Article?
Here are some more articles you might like to read next: