2090. K Radius Subarray Averages
- You are given a 0-indexed array
nums
ofn
integers, and an integerk
. - The k-radius average for a subarray of
nums
centered at some indexi
with the radiusk
is the average of all elements innums
between the indicesi - k
andi + k
(inclusive). If there are less thank
elements before or after the indexi
, then the k-radius average is-1
. - Build and return an array
avgs
of lengthn
whereavgs[i]
is the k-radius average for the subarray centered at indexi
. - The average of
x
elements is the sum of thex
elements divided byx
, using integer division. The integer division truncates toward zero, which means losing its fractional part.- For example, the average of four elements
2
,3
,1
, and5
is(2 + 3 + 1 + 5) / 4 = 11 / 4 = 2.75
, which truncates to2
.
- For example, the average of four elements
Example 1
Input: nums = [7,4,3,9,1,8,5,2,6], k = 3
Output: [-1,-1,-1,5,4,4,-1,-1,-1]
Explanation:
- avg[0], avg[1], and avg[2] are -1 because there are less than k elements before each index.
- The sum of the subarray centered at index 3 with radius 3 is: 7 + 4 + 3 + 9 + 1 + 8 + 5 = 37.
Using integer division, avg[3] = 37 / 7 = 5.
- For the subarray centered at index 4, avg[4] = (4 + 3 + 9 + 1 + 8 + 5 + 2) / 7 = 4.
- For the subarray centered at index 5, avg[5] = (3 + 9 + 1 + 8 + 5 + 2 + 6) / 7 = 4.
- avg[6], avg[7], and avg[8] are -1 because there are less than k elements after each index.
Example 2
Input: nums = [100000], k = 0
Output: [100000]
Explanation:
- The sum of the subarray centered at index 0 with radius 0 is: 100000.
avg[0] = 100000 / 1 = 100000.
Example 3
Input: nums = [8], k = 100000
Output: [-1]
Explanation:
- avg[0] is -1 because there are less than k elements before and after index 0.
Method 1
【O(n) time | O(n) space】
package Leetcode.SlideWindow;
import java.util.Arrays;
/**
* @author zhengxingxing
* @date 2024/12/22
*/
public class KRadiusSubarrayAverages {
public static int[] getAverages(int[] nums, int k) {
int n = nums.length;
if(n == 0) {
return new int[0];
}
// Initialize result array with -1
int[] result = new int[n];
Arrays.fill(result, -1);
// Running sum of current window
long windowSum = 0;
// Window size is 2k + 1
int windowSize = 2 * k + 1;
// Iterate through the array
for(int i = 0; i < n; i++) {
// Add current element to window sum
windowSum += nums[i];
// Skip until we have enough elements (2k+1) in our window
if(i < windowSize - 1) {
continue;
}
// Calculate average for the current window
result[i - k] = (int)(windowSum / windowSize);
// Remove leftmost element from window sum
// as we'll slide the window right in next iteration
windowSum -= nums[i - windowSize + 1];
}
return result;
}
public static void main(String[] args) {
// Test Case 1: Basic case
int[] nums1 = {7,4,3,9,1,8,5,2,6};
int k1 = 3;
System.out.println("Test Case 1:");
System.out.println("Input: nums = [7,4,3,9,1,8,5,2,6], k = 3");
System.out.println("Output: " + Arrays.toString(getAverages(nums1, k1)));
// Expected output: [-1,-1,-1,5,4,4,4,4,-1]
// Test Case 2: k = 0
int[] nums2 = {1,2,3,4,5};
int k2 = 0;
System.out.println("\nTest Case 2:");
System.out.println("Input: nums = [1,2,3,4,5], k = 0");
System.out.println("Output: " + Arrays.toString(getAverages(nums2, k2)));
// Expected output: [1,2,3,4,5]
// Test Case 3: k larger than array size
int[] nums3 = {1,2,3};
int k3 = 3;
System.out.println("\nTest Case 3:");
System.out.println("Input: nums = [1,2,3], k = 3");
System.out.println("Output: " + Arrays.toString(getAverages(nums3, k3)));
// Expected output: [-1,-1,-1]
// Test Case 4: Empty array
int[] nums4 = {};
int k4 = 1;
System.out.println("\nTest Case 4:");
System.out.println("Input: nums = [], k = 1");
System.out.println("Output: " + Arrays.toString(getAverages(nums4, k4)));
// Expected output: []
// Test Case 5: Large numbers
int[] nums5 = {100000,100000,100000,100000};
int k5 = 1;
System.out.println("\nTest Case 5:");
System.out.println("Input: nums = [100000,100000,100000,100000], k = 1");
System.out.println("Output: " + Arrays.toString(getAverages(nums5, k5)));
// Expected output: [-1,100000,100000,-1]
}
}
Enjoy Reading This Article?
Here are some more articles you might like to read next: