51. N-Queens
- The n-queens puzzle is the problem of placing
n
queens on ann x n
chessboard such that no two queens attack each other. - Given an integer
n
, return all distinct solutions to the n-queens puzzle. You may return the answer in any order. - Each solution contains a distinct board configuration of the n-queens’ placement, where
'Q'
and'.'
both indicate a queen and an empty space, respectively.
Example 1
Input: n = 4
Output: [ [ ".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.." ] ]
Explanation: There exist two distinct solutions to the 4-queens puzzle as shown above
Example 2
Input: n = 1
Output: [ [ "Q" ] ]
Method 1
【O(n!) time | O(n) space】
package Leetcode.Backtracking;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/**
* @author zhengxingxing
* @date 2024/12/01
*/
public class NQueens {
/**
* Main method to solve the N-Queens problem for a given board size.
*
* This method initializes the solving process and returns all valid queen arrangements.
*
* @param n The size of the chessboard (number of queens to place)
* @return A list of all possible queen arrangements, where each arrangement
* is represented as a list of string representations of board rows
*
* Key Steps:
* 1. Create an empty result list to store solutions
* 2. Initialize a queens array to track queen positions
* 3. Start the backtracking process from the first row
* 4. Return all found solutions
*/
public static List<List<String>> solveNQueens(int n) {
// List to store all valid solutions
List<List<String>> result = new ArrayList<>();
// Array to track queen positions (index = row, value = column)
int[] queens = new int[n];
// Initialize all positions as unoccupied
Arrays.fill(queens, -1);
// Start backtracking from the first row
backtrack(queens, 0, n, result);
return result;
}
/**
* Recursive backtracking method to explore all possible queen placements.
*
* This is the core algorithm that systematically tries to place queens
* on the board while maintaining the N-Queens constraints.
*
* @param queens Array representing current queen positions
* @param row Current row being processed
* @param n Total board size
* @param result List to store all valid solutions
*
* Detailed Algorithm:
* 1. Base Case: If all rows are processed, add current solution to results
* 2. For each column in the current row:
* - Check if placing a queen is valid
* - If valid, place the queen
* - Recursively process the next row
* - Implicitly backtrack by trying next column positions
*/
private static void backtrack(int[] queens, int row, int n, List<List<String>> result) {
// If we've successfully placed queens in all rows, we've found a solution
if(row == n){
result.add(constructSolution(queens, n));
return;
}
// Try placing a queen in each column of the current row
for (int col = 0; col < n; col++) {
// Check if placing a queen at this position is valid
if(isValid(queens, row, col)){
// Place the queen
queens[row] = col;
// Recursively process the next row
backtrack(queens, row + 1, n, result);
}
}
}
/**
* Validates whether a queen can be placed at the given position.
*
* Checks two key constraints:
* 1. No queen in the same column
* 2. No queen on the same diagonal
*
* @param queens Current queen positions
* @param row Row of the new queen
* @param col Column of the new queen
* @return true if queen placement is valid, false otherwise
*
* Validation Logic:
* - Column Check: Ensure no queen in the same column
* - Diagonal Check: Use absolute value difference to detect diagonal conflicts
* - Diagonal conflict occurs when |row1 - row2| == |col1 - col2|
*/
private static boolean isValid(int[] queens, int row, int col) {
// Check all previous rows
for (int i = 0; i < row; i++) {
// Check column conflict
if(queens[i] == col){
return false;
}
// Check diagonal conflicts using absolute value difference
// If |row distance| == |column distance|, queens are on the same diagonal
if(Math.abs(row - i) == Math.abs(col - queens[i])){
return false;
}
}
return true;
}
/**
* Converts the internal queens array representation to a visual board layout.
*
* Transforms the queens array into a list of strings where:
* - 'Q' represents a queen
* - '.' represents an empty square
*
* @param queens Array representing queen positions
* @param n Board size
* @return A list of strings representing the board configuration
*/
private static List<String> constructSolution(int[] queens, int n) {
List<String> solution = new ArrayList<>();
for (int i = 0; i < n; i++) {
// Create a row filled with '.' initially
char[] row = new char[n];
Arrays.fill(row, '.');
// Place queen at the correct column
row[queens[i]] = 'Q';
// Convert row to string and add to solution
solution.add(new String(row));
}
return solution;
}
public static void main(String[] args) {
// Test cases for different board sizes
int[] testCases = {1, 4};
for (int n : testCases) {
System.out.println("N = " + n + " Queens Problem Solutions:");
List<List<String>> solutions = solveNQueens(n);
// Print number of solutions
System.out.println("Number of Solutions: " + solutions.size());
// Print each solution's board layout
for (int i = 0; i < solutions.size(); i++) {
System.out.println("Solution " + (i + 1) + ":");
for (String row : solutions.get(i)) {
System.out.println(row);
}
System.out.println(); // Separator between solutions
}
System.out.println("-------------------");
}
}
}
Enjoy Reading This Article?
Here are some more articles you might like to read next: