(Review)2563. Count the Number of Fair Pairs
- Given a 0-indexed integer array
nums
of sizen
and two integerslower
andupper
, return the number of fair pairs. - A pair
(i, j)
is fair if:-
0 <= i < j < n
, and lower <= nums[i] + nums[j] <= upper
-
Example 1
Input: nums = [0,1,7,4,4,5], lower = 3, upper = 6
Output: 6
Explanation: There are 6 fair pairs: (0,3), (0,4), (0,5), (1,3), (1,4), and (1,5).
Example 2
Input: nums = [1,7,9,2,5], lower = 11, upper = 11
Output: 1
Explanation: There is a single fair pair: (2,3).
Method 1
【O(nlog(n)) time | O(1) space】
package Leetcode.TwoPointer.ThreePointer;
import java.util.Arrays;
/**
* @author zhengxingxing
* @date 2025/04/04
*/
public class CountTheNumberOfFairPairs {
public static long countFairPairs(int[] nums, int lower, int upper) {
// Sort array to handle pairs in order
Arrays.sort(nums);
long ans = 0;
// Initialize pointers to end of array
// left: tracks the leftmost position where nums[j] + nums[i] >= lower
// right: tracks the leftmost position where nums[j] + nums[i] > upper
int left = nums.length;
int right = nums.length;
// For each number as the second element of the pair
for (int i = 0; i < nums.length; i++) {
// Move right pointer left while sum is too large
// Find rightmost position where nums[right-1] + nums[i] <= upper
while (right > 0 && nums[right - 1] + nums[i] > upper) {
right--;
}
// Move left pointer left while sum is large enough
// Find rightmost position where nums[left-1] + nums[i] >= lower
while (left > 0 && nums[left - 1] + nums[i] >= lower) {
left--;
}
/**
* Calculate valid pairs for current nums[i]:
*
* Math.min(right, i) - Math.min(left, i) counts pairs where:
* 1. The first number (nums[j]) must be to the left of nums[i] (j < i)
* 2. The sum must be <= upper (controlled by right pointer)
* 3. The sum must be >= lower (controlled by left pointer)
*
* Example: for i = 2 (nums[2] = 5):
* - If right = 3 and left = 0:
* - Math.min(3, 2) = 2 (can only use positions up to i)
* - Math.min(0, 2) = 0 (start from position 0)
* - 2 - 0 = 2 pairs possible (using positions 0 and 1)
*
* We use Math.min because:
* - We can't use positions beyond i (need j < i)
* - right gives upper bound of valid positions
* - left gives lower bound of valid positions
* - The difference gives count of valid positions
*/
ans += Math.min(right, i) - Math.min(left, i);
}
return ans;
}
public static void main(String[] args) {
// Test case 1: Multiple fair pairs
int[] nums1 = {0, 1, 7, 4, 4, 5};
int lower1 = 3;
int upper1 = 6;
System.out.println("Test Case 1");
System.out.println("Input: nums = [0,1,7,4,4,5], lower = 3, upper = 6");
System.out.println("Expected Output: 6");
System.out.println("Actual Output: " + countFairPairs(nums1, lower1, upper1));
System.out.println();
// Test case 2: Single fair pair
int[] nums2 = {1, 7, 9, 2, 5};
int lower2 = 11;
int upper2 = 11;
System.out.println("Test Case 2");
System.out.println("Input: nums = [1,7,9,2,5], lower = 11, upper = 11");
System.out.println("Expected Output: 1");
System.out.println("Actual Output: " + countFairPairs(nums2, lower2, upper2));
}
}
Enjoy Reading This Article?
Here are some more articles you might like to read next: