1123. Lowest Common Ancestor of Deepest Leaves
- Given the
root
of a binary tree, return the lowest common ancestor of its deepest leaves. - Recall that:
- The node of a binary tree is a leaf if and only if it has no children
- The depth of the root of the tree is
0
. if the depth of a node isd
, the depth of each of its children isd + 1
. - The lowest common ancestor of a set
S
of nodes, is the nodeA
with the largest depth such that every node inS
is in the subtree with rootA
.
Example 1
Input: root = [3,5,1,6,2,0,8,null,null,7,4]
Output: [2,7,4]
Explanation: We return the node with value 2, colored in yellow in the diagram.
The nodes coloured in blue are the deepest leaf-nodes of the tree.
Note that nodes 6, 0, and 8 are also leaf nodes, but the depth of them is 2, but the depth of nodes 7 and 4 is 3.
Example 2
Input: root = [1]
Output: [1]
Explanation: The root is the deepest node in the tree, and it's the lca of itself.
Example 3
Input: root = [0,1,3,null,2]
Output: [2]
Explanation: The deepest leaf node in the tree is 2, the lca of one node is itself.
Method 1
【O(n) time | O(n) space】
package Leetcode.Trees;
/**
* @author zhengxingxing
* @date 2025/04/04
*/
public class LowestCommonAncestorOfDeepestLeaves {
// Store the result node (lowest common ancestor)
private static TreeNode ans;
// Track the maximum depth in the entire tree
private static int maxDepth = -1;
public static TreeNode lcaDeepestLeaves(TreeNode root) {
// Reset static variables for multiple test cases
ans = null;
maxDepth = -1;
// Start DFS from root with initial depth 0
dfs(root, 0);
return ans;
}
private static int dfs(TreeNode node, int depth) {
// Base case: reached null node
// Update maxDepth and return current depth
if (node == null) {
maxDepth = Math.max(maxDepth, depth);
return depth;
}
// Recursively process left and right subtrees
int leftMaxDepth = dfs(node.left, depth + 1);
int rightMaxDepth = dfs(node.right, depth + 1);
// If both subtrees reach the same maximum depth
// and this depth equals the tree's maximum depth,
// current node is a candidate for LCA
if (leftMaxDepth == rightMaxDepth && leftMaxDepth == maxDepth) {
ans = node;
}
// Return the maximum depth reached in this subtree
return Math.max(leftMaxDepth, rightMaxDepth);
}
public static void main(String[] args) {
// Test Case 1: Balanced tree
// 1
// / \
// 2 3
// / \
// 4 5
TreeNode test1 = new TreeNode(1);
test1.left = new TreeNode(2);
test1.right = new TreeNode(3);
test1.left.left = new TreeNode(4);
test1.right.right = new TreeNode(5);
TreeNode result1 = lcaDeepestLeaves(test1);
System.out.println("Test Case 1 - Expected: 1, Actual: " + result1.val);
// Test Case 2: Unbalanced tree
// 1
// / \
// 2 3
// / \
// 4 5
// / /
// 6 7
TreeNode test2 = new TreeNode(1);
test2.left = new TreeNode(2);
test2.right = new TreeNode(3);
test2.left.left = new TreeNode(4);
test2.left.right = new TreeNode(5);
test2.left.left.left = new TreeNode(6);
test2.left.right.left = new TreeNode(7);
TreeNode result2 = lcaDeepestLeaves(test2);
System.out.println("Test Case 2 - Expected: 2, Actual: " + result2.val);
// Test Case 3: Single node tree
TreeNode test3 = new TreeNode(1);
TreeNode result3 = lcaDeepestLeaves(test3);
System.out.println("Test Case 3 - Expected: 1, Actual: " + result3.val);
}
}
Enjoy Reading This Article?
Here are some more articles you might like to read next: