81. Search in Rotated Sorted Array II


  • There is an integer array nums sorted in non-decreasing order (not necessarily with distinct values).
  • Before being passed to your function, nums is rotated at an unknown pivot index k (0 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (0-indexed). For example, [0,1,2,4,4,4,5,6,6,7] might be rotated at pivot index 5 and become [4,5,6,6,7,0,1,2,4,4].
  • Given the array nums after the rotation and an integer target, return true if target is in nums, or false if it is not in nums.
  • You must decrease the overall operation steps as much as possible.

Example 1

Input: nums = [2,5,6,0,0,1,2], target = 0
Output: true

Example 2

Input: nums = [2,5,6,0,0,1,2], target = 3
Output: false

Method 1

【O(log(n))time∣O(1)space】
package Leetcode.BinarySearch;

/**
 * @author zhengstars
 * @date 2025/02/01
 */
public class SearchInRotatedSortedArrayII {
    public static boolean search(int[] nums, int target) {
        // Handle edge cases: empty array or null input
        if (nums == null || nums.length == 0) {
            return false;
        }

        // Initialize pointers for binary search
        int left = 0;
        int right = nums.length - 1;

        while (left <= right) {
            // Calculate middle point avoiding potential integer overflow
            int mid = left + (right - left) / 2;

            // If target is found at mid, return true
            if (nums[mid] == target) {
                return true;
            }

            // Handle the case where left element equals middle element
            // This is the key difference from the original rotated sorted array problem
            if (nums[left] == nums[mid]) {
                // Skip one duplicate element and continue
                left++;
                continue;
            }

            // Check if the left half is sorted
            if (nums[left] <= nums[mid]) {
                // Check if target lies in the left sorted half
                if (nums[left] <= target && target < nums[mid]) {
                    // Target is in the left half, search there
                    right = mid - 1;
                } else {
                    // Target is in the right half
                    left = mid + 1;
                }
            }
            // Right half must be sorted
            else {
                // Check if target lies in the right sorted half
                if (nums[mid] < target && target <= nums[right]) {
                    // Target is in the right half, search there
                    left = mid + 1;
                } else {
                    // Target is in the left half
                    right = mid - 1;
                }
            }
        }

        // Target was not found in the array
        return false;
    }

    public static void main(String[] args) {

        // Here we test our solution with five common cases.
        System.out.println(search(new int[]{2,5,6,0,0,1,2}, 0)); // We expect: true
        System.out.println(search(new int[]{2,5,6,0,0,1,2}, 3)); // We expect: false
        System.out.println(search(new int[]{4,5,6,7,0,1,2}, 0)); // We expect: true
        System.out.println(search(new int[]{4,5,6,7,0,1,2}, 3)); // We expect: false
        System.out.println(search(new int[]{1,1,1,2,1}, 2));     // We expect: true
    }
}





Enjoy Reading This Article?

Here are some more articles you might like to read next:

  • 1498. Number of Subsequences That Satisfy the Given Sum Condition
  • 1616. Split Two Strings to Make Palindrome
  • 1749. Maximum Absolute Sum of Any Subarray
  • 1472. Design Browser History
  • 1524. Number of Sub-arrays With Odd Sum